Triton
install
Better to install from source since it is under active development:
git clone https://github.com/openai/triton.git
cd triton/python
pip install -e .
Questions
- how to debug, e.g., print from kernel?
-
**it seems triton's logic is not identical to CUDA, what's the difference? **
Maybe a good answer:
(This Single-Program-Multiple-Data model seems more convoluted than CUDA...)
- Can I translate any CUDA implementation into triton?
-
if possible, is triton's performance comparable to the CUDA implementation?
Yes, and can be better if carefully tuned, according to the matrix-multiplication exp.
But the improvement is not very significant...
-
How can I use triton?
For even better performance compared to CUDA?
Since it is also hard to write efficient triton programs... this is not very practical.
For example, I cannot think of a way to use triton to do raytracing/raymarching. It still requires blocked operation, but in this case each ray behaves differently, and cannot share in a block.
basics
There is no built doc for triton.language
, search it here.
1D Vector add example:
import torch
import triton
import triton.language as tl
# decorator to call the jit compiler
@triton.jit
def kernel_add(px, py, pz, # pointer to data
N, # total element count
B: tl.constexpr, # batch size, `tl.constexpr` means value should be determined before runtime.
):
# 1D parallel (axis=0), launch B threads to process N elements in a strided way.
pid = tl.program_id(0)
# we are going to process x[pid * B : (pid + 1) * B], create the index offset.
offsets = pid * B + tl.arange(0, B)
# mask out-of-bound threads in case N % B != 0
mask = offsets < N
# load data
x = tl.load(px + offsets, mask=mask)
y = tl.load(py + offsets, mask=mask)
# calculate
z = x + y
# write data
tl.store(pz + offsets, z, mask=mask)
# function to wrap the kernel
def add(x, y):
# x, y: [N]
assert x.is_cuda and y.is_cuda
z = torch.empty_like(x)
N = x.shape[0]
# how many kernels to launch to cover N elements (return a tuple)
grid = lambda meta: (triton.cdiv(N, meta['B']),) # ceiling division, allocate enough blocks.
kernel_add[grid](x, y, z, N, B=512)
return z
# test
N = 10240
x = torch.rand(N, device='cuda')
y = torch.rand(N, device='cuda')
z0 = x + y
z1 = add(x, y)
print(torch.allclose(z0, z1))
Some differences from writing CUDA :
- We don't use
N_THREAD
, instead, we useBLOCK_SIZE = N / N_THREAD
.
parallel-on-batch-dim example (softmax):
import torch
import triton
import triton.language as tl
@triton.jit
def kernel_softmax(px, py, M, B: tl.constexpr):
# parallel on N rows
pid = tl.program_id(0)
# allocate
px = px + pid * M
py = py + pid * M
offsets = tl.arange(0, B)
# mask (a little different, this mask happens for each thread)
mask = offsets < M
# load
x = tl.load(px + offsets, mask=mask, other=-float('inf'))
# calc
x = x - tl.max(x, axis=0) # for numerical stability
num = tl.exp(x)
den = tl.sum(num, axis=0)
y = num / den
# write
tl.store(py + offsets, y, mask=mask)
def softmax(x):
# x: [N, M], perform row-wise softmax
N, M = x.shape
y = torch.empty_like(x)
# block size must cover a full row
B = triton.next_power_of_2(M)
# launch N kernels (parallel per batch)
kernel_softmax[(N,)](x, y, M, B=B)
return y
# test
x = torch.randn(10, 100, device='cuda')
y0 = torch.softmax(x, axis=1)
y1 = softmax(x)
assert torch.allclose(y0, y1), (y0, y1)
# benchmark
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['M'], # argument names to use as an x-axis for the plot
x_vals=[
128 * i for i in range(1, 100, 10)
], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
line_vals=[
'triton',
'torch-native',
], # possible values for `line_arg``
line_names=[
"Triton",
"Torch (native)",
], # label name for the lines
styles=[('blue', '-'), ('green', '-')], # line styles
ylabel="GB/s", # label name for the y-axis
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
args={'N': 4096}, # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(N, M, provider):
x = torch.randn(N, M, device='cuda', dtype=torch.float32)
if provider == 'torch-native':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=1))
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: softmax(x))
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
return gbps(ms), gbps(max_ms), gbps(min_ms)
benchmark.run(show_plots=False, print_data=True)
TODO:
Matrix-multiplication example:
import torch
import triton
import triton.language as tl
# %
# :code:`triton.jit`'ed functions can be auto-tuned by using the `triton.autotune`
# decorator, which consumes:
# - A list of :code:`triton.Config` objects that define different configurations of
# meta-parameters (e.g., BLOCK_SIZE_M) and compilation options (e.g., num_warps) to try
# - An autotuning *key* whose change in values will trigger evaluation of all the
# provided configs
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@triton.jit
def matmul_kernel(
# Pointers to matrices
a_ptr, b_ptr, c_ptr,
# Matrix dimensions
M, N, K,
# The stride variables represent how much to increase the ptr by when moving by 1
# element in a particular dimension. E.g. stride_am is how much to increase a_ptr
# by to get the element one row down (A has M rows)
stride_am, stride_ak,
stride_bk, stride_bn,
stride_cm, stride_cn,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
ACTIVATION: tl.constexpr,
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
# -----------------------------------------------------------
# Map program ids `pid` to the block of C it should compute.
# This is done in a grouped ordering to promote L2 data reuse
# See above `L2 Cache Optimizations` section for details
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# and accumulate
# a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# b_ptrs is a block of [BLOCK_SIZE_K, BLOCK_SIZE_n] pointers
# see above `Pointer Arithmetics` section for details
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
# of fp32 values for higher accuracy.
# `accumulator` will be converted back to fp16 after the loop
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, K, BLOCK_SIZE_K):
# Note that for simplicity, we don't apply a mask here.
# This means that if K is not a multiple of BLOCK_SIZE_K,
# this will access out-of-bounds memory and produce an
# error or (worse!) incorrect results.
a = tl.load(a_ptrs)
b = tl.load(b_ptrs)
# We accumulate along the K dimension
accumulator += tl.dot(a, b)
# Advance the ptrs to the next K block
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# you can fuse arbitrary activation functions here
# while the accumulator is still in FP32!
if ACTIVATION:
accumulator = ACTIVATION(accumulator)
c = accumulator.to(tl.float16)
# -----------------------------------------------------------
# Write back the block of the output matrix C
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
# we can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`
@triton.jit
def leaky_relu(x):
return tl.where(x >= 0, x, 0.01 * x)
def matmul(a, b, activation=None):
# checks constraints
assert a.shape[1] == b.shape[0], "incompatible dimensions"
assert a.is_contiguous(), "matrix A must be contiguous"
assert b.is_contiguous(), "matrix B must be contiguous"
M, K = a.shape
K, N = b.shape
assert (
K % 32 == 0
), "We don't check memory-out-of-bounds with K so K must be divisible by BLOCK_SIZE_K"
# allocates output
c = torch.empty((M, N), device=a.device, dtype=a.dtype)
# 1D launch kernel where each block gets its own program.
grid = lambda META: (
triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']),
)
matmul_kernel[grid](
a, b, c,
M, N, K,
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1),
ACTIVATION=activation,
)
return c
torch.manual_seed(0)
a = torch.randn((512, 512), device='cuda', dtype=torch.float16)
b = torch.randn((512, 512), device='cuda', dtype=torch.float16)
triton_output = matmul(a, b, activation=None)
torch_output = torch.matmul(a, b)
print(f"triton_output={triton_output}")
print(f"torch_output={torch_output}")
if triton.testing.allclose(triton_output, torch_output):
print("✅ Triton and Torch match")
else:
print("❌ Triton and Torch differ")
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['M', 'N', 'K'], # argument names to use as an x-axis for the plot
x_vals=[
128 * i for i in range(2, 33)
], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
# possible values for `line_arg``
line_vals=['cublas', 'cublas + relu', 'triton', 'triton + relu'],
# label name for the lines
line_names=["cuBLAS", "cuBLAS (+ torch.nn.LeakyReLU)", "Triton", "Triton (+ LeakyReLU)"],
# line styles
styles=[('green', '-'), ('green', '--'), ('blue', '-'), ('blue', '--')],
ylabel="TFLOPS", # label name for the y-axis
plot_name="matmul-performance", # name for the plot. Used also as a file name for saving the plot.
args={},
)
)
def benchmark(M, N, K, provider):
a = torch.randn((M, K), device='cuda', dtype=torch.float16)
b = torch.randn((K, N), device='cuda', dtype=torch.float16)
if provider == 'cublas':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b))
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b))
if provider == 'cublas + relu':
torch_relu = torch.nn.ReLU(inplace=True)
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: torch_relu(torch.matmul(a, b))
)
if provider == 'triton + relu':
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: matmul(a, b, activation=leaky_relu)
)
perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
return perf(ms), perf(max_ms), perf(min_ms)
benchmark.run(show_plots=True, print_data=True)