scipy.sparse API
Sparse matrix class
-
bsr_matrix
Block Sparse Row format
-
coo_matrix
Coordinate format.
No support for arithmetic operators, and no slicing.
Usually used to construct, then changed to csr/csc for arithmetic.
coo_matrix(D) coo_matrix((m, n), dtype=np.int32) coo_matrix((data, (I, J)), shape=[M, N]) coo.toarray() coo.shape/ndim/dtype coo.tocsr() # csr_matrix(coo)
-
csr_matrix
Compressed Sparse Row format
efficient row slicing and arithmetic operations between CSRs.
-
csc_matrix
Compressed Sparse Column format
-
dia_matrix
Diagonal storage format
dia_matrix((data, offsets=0), shape=(M,N))
-
dok_matrix
Dictionary Of Key format
-
lil_matrix
Linked List format
Functions
eye(m[, dtype, format="dia"])
identity(n[, dtype, format])
diags(diagonals[, offsets, shape, format, dtype])
rand(m, n[, density, format, dtype])
issparse(x) # isspmatrix(x)
isspmatrix_csc(x)
linalg
inv(A)
expm(A) # exp using Pade approximation
eigs(A[, k, M, which])
'''
k: calculate the first k eig
M: generalized eigenproblem Ax=wMx
which: which first k eig to find
"LM": largest magnitude
"SM": smallest magnitude
"LR": largest real part
"LI": largest imaginary part
'''
eigsh(A[, k]) # fast for real sym mat